CERTAIN CUBIC POLYNOMIALS OVER FINITE FIELDS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible Polynomials over Finite Fields

As we will see, modular arithmetic aids in testing the irreducibility of polynomials and even in completely factoring polynomials in Z[x]. If we expect a polynomial f(x) is irreducible, for example, it is not unreasonable to try to find a prime p such that f(x) is irreducible modulo p. If we can find such a prime p and p does not divide the leading coefficient of f(x), then f(x) is irreducible ...

متن کامل

Settled Polynomials over Finite Fields

We study the factorization into irreducibles of iterates of a quadratic polynomial f over a finite field. We call f settled when the factorization of its nth iterate for large n is dominated by “stable” polynomials, namely those that are irreducible under post-composition by any iterate of f . We prove that stable polynomials may be detected by their action on the critical orbit of f , and that...

متن کامل

A New Tower Over Cubic Finite Fields

We present a new explicit tower of function fields (Fn)n≥0 over the finite field with ` = q3 elements, where the limit of the ratios (number of rational places of Fn)/(genus of Fn) is bigger or equal to 2(q2 − 1)/(q + 2). This tower contains as a subtower the tower which was introduced by Bezerra– Garcia–Stichtenoth (see [3]), and in the particular case q = 2 it coincides with the tower of van ...

متن کامل

Certain diagonal equations over finite fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

متن کامل

Some New Permutation Polynomials over Finite Fields

In this paper, we construct a new class of complete permutation monomials and several classes of permutation polynomials. Further, by giving another characterization of opolynomials, we obtain a class of permutation polynomials of the form G(x) + γTr(H(x)), where G(X) is neither a permutation nor a linearized polynomial. This is an answer to the open problem 1 of Charpin and Kyureghyan in [P. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2009

ISSN: 0304-9914

DOI: 10.4134/jkms.2009.46.1.001